Anti-P. cookianum Xylan [CCRC-M113] Antibody (supernatant)

This mouse IgG1 monoclonal antibody was generated against xylan (high arabinose)/MeBSA and recognizes phormium cookianum xylan.

Highlights:

  • Reacts with P. cookianum, sorghum and corn xylan
  • Binds to xylans from monocots
  • Suitable for ELISA applications

Xylan is a group of hemicelluloses that reside in plant cells walls and also can be found in some algae (both green and red). Xylans are polysaccharides whose backbone consists of beta-1,4-linked xylosyl residues. This backbone can be substituted with side-chains of arabinosyl, glucuronosyl, and 4-O-mthylglucuronosyl residues, and can also be further modified by acetyl substitution on the hydroxyls of the xylosyl residues.

From the laboratory of Michael G. Hahn, PhD, University of Georgia.

Catalog Number Product DataSheet Size AVAILABILITY Price Qty
EGA135
Anti-P. cookianum Xylan [CCRC-M113] Antibody (supernatant)
5mL (supernatant) 4-6 weeks
Regular Price:$310.00
On Sale:
Specifications

Product Type: Antibody
Accession ID: M113
Antigen: Xylan of P. cookianum
Isotype: IgG1
Clonality: Monoclonal
Clone Name: 14C7.F6.F8.A6
Reactivity: P. cookianum,sorghum, corn
Immunogen: Xylan(high arabinose)/MeBSA
Species Immunized: Mouse
Buffer: Cell culture supernatant
Tested Applications: ELISA
Storage: <1 month at 4C, >1 month at -80C
Shipped: Cold Packs

Documentation

PDF CCRC-M113 Cross Reactivity Map

Notes:

These monoclonal antibodies were developed under the sponsorship of the US National Science Foundation, through award number DBI-0421683. Their use in biomass characterization, study of biomass deconstruction and quantitation was developed under the sponsorship of the US Department of Energy through awards DE-PS02-06ER64304 and DE-AC05-00OR22725 (BioEenergy Science Center).

Provider
From the laboratory of Michael G. Hahn, PhD, University of Georgia.
References
  1. Robin E. Young, Heather E. McFarlane, Michael G. Hahn, Tamara L. Western, George W. Haughn and A. Lacey Samuels. 2008. Analysis of the Golgi Apparatus in Arabidopsis Seed Coat Cells during Polarized Secretion of Pectin-Rich Mucilage. The Plant Cell June 2008 vol. 20 no. 6 1623-1638 .
  2. DeMartini, JD, Pattathil, S, Avci, U, Szekalski, K, Mazumder, K, Hahn, M.G., Wyman, CE: Application of monoclonal antibodies to investigate plant cell wall deconstruction for biofuels production. Energy Environ. Sci., 2011, 4, 4332-4339.
  3. Pattathil S, Avci U, Miller JS, Hahn MG. 2012. Immunological approaches to plant cell wall and biomass characterization: Glycome profiling. In: Himmel M (ed) Biomass Conversion: Methods and Protocols. Springer Science + Business Media, LLC, New York, NY, pp 61-72.
  4. A.P. de Souza, D.C.C. Leite, S. Pattahil, M.G. Hahn, M.S. Buckeridge. 2013. Composition and structure of sugarcane cell wall polysaccharides: Implications for second generation bioethanol production. Bioenergy Research 6: 564-579.
  5. J. Puhlmann, E. Bucheli, M. J. Swain, N. Dunning, P. Albersheim, A. G. Darvill, and M. G. Hahn. (1994) Generation of monoclonal antibodies against plant cell wall polysaccharides. I. Characterization of a monoclonal antibody to a terminal alpha-(1,2)-linked fucosyl-containing epitope. Plant Physiol. 104:699-710.
  6. G. Freshour, R. P. Clay, M. S. Fuller, P. Albersheim, A. G. Darvill, and M. G. Hahn. (1996) Developmental and tissue-specific structural alterations of the cell-wall polysaccharides of Arabidopsis thaliana roots. Plant Physiol. 110:1413-1429.
  7. G. Freshour, C. P. Bonin, W.-D. Reiter, P. Albersheim, A. G. Darvill, and M. G. Hahn. (2003) Distribution of fucose-containing xyloglucans in cell walls of the mur1 mutant of Arabidopsis thaliana. Plant Physiol. 131:1602-1612.
  8. Pattathil S, Avci U, Baldwin D, Swennes AG, McGill JA, Popper Z, Bootten T, Albert A, Davis RH, Chennareddy C, Dong R, O'Shea B, Rossi R, Leoff C, Freshour G, Narra R, O'Neil M, York WS, Hahn MG. (2010) A Comprehensive Toolkit of Plant Cell Wall Glycan-Directed Monoclonal Antibodies. Plant Physiol. 153:514-525.
  9. Pattathil S, Avci U, Miller JS, Hahn MG. 2012. Immunological approaches to plant cell wall and biomass characterization: Glycome profiling. In: Himmel M (ed) Biomass Conversion: Methods and Protocols. Springer Science + Business Media, LLC, New York, NY, pp 61-72.
  10. Pattathil S, Avci U, Baldwin D, et al. 2010. A comprehensive toolkit of plant cell wall glycan-directed monoclonal antibodies. Plant Physiology 153, 514-525.

If you publish research with this product, please let us know so we can cite your paper.

Loading...